Hi, How Can We Help You?
  • Address: 1251 Lake Forest Drive New York
  • Email Address: assignmenthelpcentral@gmail.com

Tag Archives: • Part C Why is it advantageous to produce plutonium-239?

November 12, 2025
November 12, 2025

Nuclear Reactions & Energy

discussion-  Research and discuss the aurora borealis in terms of electric charges, magnetic fields, and forces. Which times of the year are best for seeing the northern lights, and where are the best places to view them? Explain your answers. Also identify links to good images. If you’ve ever seen the aurora borealis, describe your experience and note the time and place that you saw it.

Faraday’s Law

Electric generators use the properties of electromagnetism to transform kinetic energy into electrical energy. Many electric generators work by spinning a permanent magnet near coils of wire. Experiment with this simulation of electricity generation to visualize how this process works. Once the simulation opens, try moving the permanent magnet around to see what happens. Also rapidly switch the polarity of the magnet by repeatedly clicking on the magnet icon at the bottom of the page, and observe the effect.

Part A

Nuclear Reactions & Energy

Try moving the magnet in the different ways described in the table below,. Record your observations in the second column of the table.

Motion                                                            Observations

Move the magnet straight through the coil, leading with the north pole. Once the magnet is completely through, move it back to its original position.

Move the magnet straight through the coil, only this time leading with the south pole. Once the magnet is completely through, move it back to its original position

Put the magnet in the center of the coil, but don’t move it.

Put the magnet on the outside of the coil. Repeatedly move it up and down while outside of the coil.

Keeping the magnet outside of the coil. Repeatedly move it back and forth horizontally.

Place the magnet back inside of the coil. Now repeatedly switch the polarity of the magnet by pressing the button toward the bottom-right of the page over and over again.

10ptSpace used(includes formatting): 1294 / 30000

Part B

After producing electricity in many different ways, describe what causes electricity to flow in the coil? In your response, describe the types of forces acting on the electrons and how they result in movement.

 

As you know, loudspeakers are used for communication at sporting events, and in schools or supermarkets. Research loudspeakers on the Web. Describe the components of a speaker and explain how it produces sound. In particular, explain how the force on a current-carrying wire in a magnetic field is used to make a speaker operate.

15px
Nuclear Reactions & Energy

Throughout this lesson, you learned about the lives and contributions of key scientists in this area of physics. Create a timeline that ties them all together. The timeline does not need to be highly detailed, but it should do the following:

  • Include at least the four major scientists covered in this unit: Oersted, Ampère, Faraday, and Tesla.
  • Include key contributions of each scientist and provide a year, if possible, for those contributions.
  • Note any relationships among these and other scientists, especially if one developed something based on the work of another.
  • Arrange the scientists chronologically by their first key contribution, not by their birth date.
  • Part A Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production?,

  • Part B Why is uranium-235 the most common isotope for nuclear fission in current use in nuclear power generation?,

  • Part C Why is it advantageous to produce plutonium-239?,

  • Question 1 Part B Determine the energy released per kilogram of fuel used.,

November 12, 2025
November 12, 2025

Nuclear Reactions & Energy

Scientists such as Heinrich Hertz, Philipp Lenard, Max Planck, and Albert Einstein made scientific contributions that ultimately demonstrated that light is electromagnetic radiation, and that it has a “dual nature.” Some electromagnetic phenomena are best explained with a particle model, and some with a wave model. In a sense, “wave” and “particle” are just easy mental models for light. We employ them because we are used to seeing waves and particles—such as those in water waves and baseballs—in our daily lives. Electromagnetic radiation is a basic concept in physics, but it doesn’t fit completely into one of these neat little boxes.

Research and discuss at least one modern technology that employs electromagnetic radiation and that can be explained by the wave model, the particle model, or a combination of the two. Some possible technologies include solar panels, burglar alarms, cameras, and cell phones.

Research Fusion and Fission Reactions

Read about Nuclear power and then search the internet for more information about fission and fusion reactions. Use the search terms:

  • deuterium-tritium fusion reaction
  • uranium-235 fission reaction
  • plutonium-239 fission reaction

Nuclear Reactions & Energy

Part A

Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production?

15pxSpace used(includes formatting): 0 / 30000

Part B

Why is uranium-235 the most common isotope for nuclear fission in current use in nuclear power generation?

15pxSpace used(includes formatting): 0 / 30000

Part C

Why is it advantageous to produce plutonium-239?

15px

 

Calculations

Complete the calculations for each nuclear reaction listed below.

Use these resources to better understand the activity at hand and to help in your tasks:

Conversions:

  • 1MeV = 1.6 x 10-13 J
  • Energy use per person per year in the United States = 3.5 x 1011 Joules
    (estimated, varies by source, August 2009)
  • Approximate population of USA: 310,000,000

Question 1

Deuterium-Tritium Fusion Reaction

Given: energy released = 17.59 MeV per deuterium/tritium reaction pair (mass = 5 amu)

Part A

List the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of tritium plus 1 mole of deuterium to be a mole of “reactions” (total molar mass = 5 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years.

  • Energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting): 0 / 30000

Question 2

Uranium-235 Fission

Given: energy released = about 200 MeV per individual reaction (mass = 235 amu)

Part A

Find the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of uranium-235 to be a mole of “reactions” (molar mass = 235 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years:

  • Provide the energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting): 0 / 30000

Question 3

Plutonium-239

Given: energy released = about 200 MeV per individual reaction (mass = 239 amu)

Part A

List the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of plutonium-239 to be a mole of “reactions” (molar mass = 239 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years.

  • Energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting):

 

Analysis and Conclusions

Write a summary of your findings from the calculations section above. Discuss information from your research and the pros and cons of each energy alternative.

Part A

Summarize the results of your calculations from Task 2.

15pxSpace used(includes formatting): 0 / 30000

Part B

Discuss the pros and cons of fission and fusion reactions based on your research.

15pxSpace used(includes formatting): 0 / 30000

Part C

Write your conclusions as to which nuclear reaction is the best alternative energy source.

15pxSpace used(includes formatting): 0 / 30000

  • Part A Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production?,

  • Part B Why is uranium-235 the most common isotope for nuclear fission in current use in nuclear power generation?,

  • Part C Why is it advantageous to produce plutonium-239?,

  • Question 1 Part B Determine the energy released per kilogram of fuel used.,

November 4, 2025
November 4, 2025

Nuclear Energy & EM Discussion

Scientists such as Heinrich Hertz, Philipp Lenard, Max Planck, and Albert Einstein made scientific contributions that ultimately demonstrated that light is electromagnetic radiation, and that it has a “dual nature.” Some electromagnetic phenomena are best explained with a particle model, and some with a wave model. In a sense, “wave” and “particle” are just easy mental models for light. We employ them because we are used to seeing waves and particles—such as those in water waves and baseballs—in our daily lives. Electromagnetic radiation is a basic concept in physics, but it doesn’t fit completely into one of these neat little boxes.

Research and discuss at least one modern technology that employs electromagnetic radiation and that can be explained by the wave model, the particle model, or a combination of the two. Some possible technologies include solar panels, burglar alarms, cameras, and cell phones.

Nuclear Energy & EM Discussion

Research Fusion and Fission Reactions

Read about Nuclear power and then search the internet for more information about fission and fusion reactions. Use the search terms:

  • deuterium-tritium fusion reaction
  • uranium-235 fission reaction
  • plutonium-239 fission reaction

Part A

Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production?

15pxSpace used(includes formatting): 0 / 30000

Part B

Why is uranium-235 the most common isotope for nuclear fission in current use in nuclear power generation?

15pxSpace used(includes formatting): 0 / 30000

Part C

Why is it advantageous to produce plutonium-239?

15px

 

Calculations

Complete the calculations for each nuclear reaction listed below.

Use these resources to better understand the activity at hand and to help in your tasks:

Conversions:

  • 1MeV = 1.6 x 10-13 J
  • Energy use per person per year in the United States = 3.5 x 1011 Joules
    (estimated, varies by source, August 2009)
  • Approximate population of USA: 310,000,000

Question 1

Deuterium-Tritium Fusion Reaction

Given: energy released = 17.59 MeV per deuterium/tritium reaction pair (mass = 5 amu)

Part A

List the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of tritium plus 1 mole of deuterium to be a mole of “reactions” (total molar mass = 5 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years.

  • Energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting): 0 / 30000

Question 2

Uranium-235 Fission

Given: energy released = about 200 MeV per individual reaction (mass = 235 amu)

Part A

Find the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of uranium-235 to be a mole of “reactions” (molar mass = 235 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years:

  • Provide the energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting): 0 / 30000

Question 3

Plutonium-239

Given: energy released = about 200 MeV per individual reaction (mass = 239 amu)

Part A

List the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of plutonium-239 to be a mole of “reactions” (molar mass = 239 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years.

  • Energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting):

 

Analysis and Conclusions

Write a summary of your findings from the calculations section above. Discuss information from your research and the pros and cons of each energy alternative.

Part A

Summarize the results of your calculations from Task 2.

15pxSpace used(includes formatting): 0 / 30000

Part B

Discuss the pros and cons of fission and fusion reactions based on your research.

15pxSpace used(includes formatting): 0 / 30000

Part C

Write your conclusions as to which nuclear reaction is the best alternative energy source.

15pxSpace used(includes formatting): 0 / 30000
Part A Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production?,
Part B Why is uranium-235 the most common isotope for nuclear fission in current use in nuclear power generation?,
Part C Why is it advantageous to produce plutonium-239?,
Question 1 Part B Determine the energy released per kilogram of fuel used.,
Question 2 Part B Determine the energy released per kilogram of fuel used.