Hi, How Can We Help You?
  • Address: 1251 Lake Forest Drive New York
  • Email Address: assignmenthelpcentral@gmail.com

Author Archives: Academic Wizard

August 19, 2025
August 19, 2025

Lab Report Guidelines

• Laboratory Preparation: Instructions to all lab experiments are posted on our Blackboard course website. Before performing each lab activity, students must read the instructions, prepare for the laboratory, and study the theory for the experiment. Online lab experiments will be performed by each student as specified in the lab instructions, and a single report will be submitted for each experiment activity. Students can work on the experiments individually or in small groups of 2 or 3 students, but each student must write and submit their own lab report and include a detailed list of contributions from all group members to the lab (see below).

• Laboratory Report Policy: Each lab experiment will span two weeks: The 1st week is devoted to reviewing the activity and collecting the data, while the 2nd week is devoted to completing the lab report. Each student will be responsible for producing a report pertaining to each experiment. Lab reports must be typed and submitted (uploaded as assignments) via Blackboard website using the corresponding link available in the Labs & Reports folder. Lab reports are due on Sunday by midnight (11:59 pm) before your next lab (see course schedule). Lab reports will be graded and returned to you via Blackboard website with feedback and comments. Reports will not be accepted via email. A student must pass the lab portion of the course in order to pass the entire course.

• Late Report Policy: Late laboratory reports will only be accepted in the case of extreme emergency or illness and prior arrangements have been made with the instructor. Students that do not participate in the lab activity or do not submit the required lab report, will not get credit for the lab and will receive a grade of zero (0%). Refer to the course syllabus for more details. Lab Report Guidelines

Lab Report Guidelines

 

• Format of Laboratory Reports: Laboratory reports must be typed professionally using Microsoft Word (*.doc or *.docx) and in standard font. Plagiarism and copying from the lab instructions or from another student will not be tolerated. Each report must be a single document less than 1 MB in size, and the basic parts of all lab reports must be arranged in the following order:

1. A “Title page” containing your name followed by your partner’s names if any, the title of the report, the

course code, section number, and the date when the experiment was performed.

2. A section entitled “Objectives”, which contains the objective or objectives of the experiment.

3. A section entitled “Theory”, which contains all pertinent theoretical considerations and equations used during the lab or in the calculations. All equations must be explained and typed using Microsoft Word.

4. A section entitled “Equipment and Materials”, which contains a list of the equipment and materials used to carry out the experiment. Also, include a sketch of the lab set-up, equipment, or simulation.

5. A section entitled “Data”, which contains the collected data and results in tabular format. All data tables must be typed using Microsoft Word. Do not include any calculations in this section.

6. A section entitled “Graphs and Screenshots”, which contains any required graphs, diagrams, or screenshots. All graphs must have a title, a well-chosen scale, and properly labeled axes. Curves and straight lines should be drawn smoothly and as close to as many points as possible. Graphs must also display any required slopes or intercepts. Screenshots must be clear and properly labeled.

7. A section entitled “Calculations”, which contains detailed calculations for all trials showing the equations used, algebra, and results rounded to the correct number of significant figures. Include in this section comparisons with expected or standard values (percent error or percent difference). All calculations must be typed using Microsoft Word. Lab Report Guidelines

8. A section entitled “Conclusions”, which contains conclusions based on the data, calculations, physical theory, and lab analysis. The conclusions should include: ✓ Summary of final results (values). ✓ Comment on the agreement or disagreement of the results with the theory or expectations. ✓ Answers all analysis questions given in the lab instruction or by the lab instructor. ✓ Discuss what you personally learned from this experiment and your observations/comments.

9. A section entitled “Sources of Error”, which contains a list of the possible sources of experimental errors. There are always errors in any measurement. Identify some of the significant sources.

10. A section entitled “References” that lists all references used. Textbook and lab manual/handouts should always be included.

11. If students worked on the lab as a group, include a section at the end of the report entitled “Contributions” that lists in detail the contributions of all group members to the lab. Remember that each student must write and submit their own lab report for each lab activity or experiment.

  • What is the required structure and format of lab reports?,

  • What is the policy for submission and deadlines?,

  • What happens if a report is late or missing?,

  • What specific sections must be included in every lab report?,

  • How should group contributions be documented?

August 19, 2025
August 19, 2025

Nuclear Energy & Light

Scientists such as Heinrich Hertz, Philipp Lenard, Max Planck, and Albert Einstein made scientific contributions that ultimately demonstrated that light is electromagnetic radiation, and that it has a “dual nature.” Some electromagnetic phenomena are best explained with a particle model, and some with a wave model. In a sense, “wave” and “particle” are just easy mental models for light. We employ them because we are used to seeing waves and particles—such as those in water waves and baseballs—in our daily lives. Electromagnetic radiation is a basic concept in physics, but it doesn’t fit completely into one of these neat little boxes.

Research and discuss at least one modern technology that employs electromagnetic radiation and that can be explained by the wave model, the particle model, or a combination of the two. Some possible technologies include solar panels, burglar alarms, cameras, and cell phones.

Research Fusion and Fission Reactions Nuclear Energy & Light

Read about Nuclear power and then search the internet for more information about fission and fusion reactions. Use the search terms:

  • deuterium-tritium fusion reaction
  • uranium-235 fission reaction
  • plutonium-239 fission reaction

Part A

Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production?

15pxSpace used(includes formatting): 0 / 30000

Part B

Why is uranium-235 the most common isotope for nuclear fission in current use in nuclear power generation?

15pxSpace used(includes formatting): 0 / 30000

Part C

Why is it advantageous to produce plutonium-239?

15px

Nuclear Energy & Light

 

Calculations

Complete the calculations for each nuclear reaction listed below.

Use these resources to better understand the activity at hand and to help in your tasks:

Conversions:

  • 1MeV = 1.6 x 10-13 J
  • Energy use per person per year in the United States = 3.5 x 1011 Joules
    (estimated, varies by source, August 2009)
  • Approximate population of USA: 310,000,000

Question 1 Nuclear Energy & Light

Deuterium-Tritium Fusion Reaction

Given: energy released = 17.59 MeV per deuterium/tritium reaction pair (mass = 5 amu)

Part A

List the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of tritium plus 1 mole of deuterium to be a mole of “reactions” (total molar mass = 5 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years.

  • Energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting): 0 / 30000

Question 2

Uranium-235 Fission

Given: energy released = about 200 MeV per individual reaction (mass = 235 amu)

Part A

Find the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of uranium-235 to be a mole of “reactions” (molar mass = 235 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years:

  • Provide the energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting): 0 / 30000

Question 3

Plutonium-239

Given: energy released = about 200 MeV per individual reaction (mass = 239 amu)

Part A

List the balanced nuclear reaction.

15pxSpace used(includes formatting): 0 / 30000

Part B

Determine the energy released per kilogram of fuel used.

  • Given MeV per reaction, calculate energy in joules per kilogram of reactants.
  • Consider 1 mole of plutonium-239 to be a mole of “reactions” (molar mass = 239 grams).

15pxSpace used(includes formatting): 0 / 30000

Part C

Determine the mass of fuel required for the expected energy consumption in the United States for the next 10 years.

  • Energy use per person per year in the United States = 3.5 × 1011 joules.
  • Base your calculations on a current population of 310,000,000.

15pxSpace used(includes formatting):

 

Analysis and Conclusions

Write a summary of your findings from the calculations section above. Discuss information from your research and the pros and cons of each energy alternative.

Part A

Summarize the results of your calculations from Task 2.

15pxSpace used(includes formatting): 0 / 30000

Part B

Discuss the pros and cons of fission and fusion reactions based on your research.

15pxSpace used(includes formatting): 0 / 30000

Part C

Write your conclusions as to which nuclear reaction is the best alternative energy source.

15pxSpace used(includes formatting): 0 / 30000

  • Which modern technology employs electromagnetic radiation explained by wave/particle models?,

  • Why is the deuterium-tritium reaction the most promising fusion reaction?,

  • Why is uranium-235 the most common isotope for nuclear fission?,

  • Why is plutonium-239 advantageous to produce?,

  • How much energy and fuel are required for fusion and fission reactions and what are the pros/cons of each?

August 19, 2025
August 19, 2025

Electromagnetism & Aurora

 discussion-  Research and discuss the aurora borealis in terms of electric charges, magnetic fields, and forces. Which times of the year are best for seeing the northern lights, and where are the best places to view them? Explain your answers. Also identify links to good images. If you’ve ever seen the aurora borealis, describe your experience and note the time and place that you saw it.

Faraday’s Law

Electric generators use the properties of electromagnetism to transform kinetic energy into electrical energy. Many electric generators work by spinning a permanent magnet near coils of wire. Experiment with this simulation of electricity generation to visualize how this process works. Once the simulation opens, try moving the permanent magnet around to see what happens. Also rapidly switch the polarity of the magnet by repeatedly clicking on the magnet icon at the bottom of the page, and observe the effect.

Part A

Electromagnetism & Aurora

e magnet in the different ways described in the table below,. Record your observations in the second column of the table. 

Motion                                                            Observations

Move the magnet straight through the coil, leading with the north pole. Once the magnet is completely through, move it back to its original position.

Move the magnet straight through the coil, only this time leading with the south pole. Once the magnet is completely through, move it back to its original position

Put the magnet in the center of the coil, but don’t move it.

Put the magnet on the outside of the coil. Repeatedly move it up and down while outside of the coil.

Keeping the magnet outside of the coil. Repeatedly move it back and forth horizontally.

Place the magnet back inside of the coil. Now repeatedly switch the polarity of the magnet by pressing the button toward the bottom-right of the page over and over again.

10ptSpace used(includes formatting): 1294 / 30000

Electromagnetism & Aurora

 

Part B

After producing electricity in many different ways, describe what causes electricity to flow in the coil? In your response, describe the types of forces acting on the electrons and how they result in movement.

 

As you know, loudspeakers are used for communication at sporting events, and in schools or supermarkets. Research loudspeakers on the Web. Describe the components of a speaker and explain how it produces sound. In particular, explain how the force on a current-carrying wire in a magnetic field is used to make a speaker operate.

15px

Electromagnetism & Aurora

Throughout this lesson, you learned about the lives and contributions of key scientists in this area of physics. Create a timeline that ties them all together. The timeline does not need to be highly detailed, but it should do the following:

  • Include at least the four major scientists covered in this unit: Oersted, Ampère, Faraday, and Tesla.
  • Include key contributions of each scientist and provide a year, if possible, for those contributions.
  • Note any relationships among these and other scientists, especially if one developed something based on the work of another.
  • Arrange the scientists chronologically by their first key contribution, not by their birth date.
  • What causes the aurora borealis and when/where is it best observed?,

  • What happens when a magnet is moved in different ways through/near a coil?,

  • What causes electricity to flow in a coil?,

  • How does a loudspeaker work using electromagnetism?,

  • What is the timeline of Oersted Ampère Faraday and Tesla’s contributions?

August 19, 2025
August 19, 2025

Home Energy & Safety

Discussion-   It’s possible to save a great deal of electrical energy (and money and natural resources) with some simple changes in household electrical use. The trouble is that most of these changes mean either changing behavior or spending money. Do an Internet search and review a few ways to save electrical energy. Discuss at least one change that you think would be reasonable and worthwhile to do in your own home in the next year. Provide your rationale.

Home Energy Use

In this activity, you are going to perform an experiment to track the amount of power you and your family use, then look at some basic patterns in that usage. (NOTE: If you live in an apartment or home in which you do not have access to the electrical meter, consult with your instructor about alternative arrangements, like teaming with a classmate to gather this data.)

This experiment is going to span the course of a full week and require 12 meter readings. It really involves two separate experiments:

  • tracking daily energy use for a week to compare any usage variations from day to day
  • comparing a single high-usage time period of a few hours with a single low-usage time period of a few hours to help you identify the extremes in your household electrical use Home Energy & Safety

You can easily do both experiments during the same time period. This approach would be the easiest and fastest way to proceed. Read the instructions for both Part A and Part B if you wish to do both experiments at the same time.

To begin, you’ll need to find your electric meter, which could be inside or outside of your home. Many electric meters these days are digital and pretty easy to read, but if you have an older “dial-type” meter, go to this electric meter reading guide to learn about how to read and understand it.

For each of the two experiments below, you will first record three simple pieces of data in a table:

1) day and date, 2) time, and 3) the kWh reading from the meter.

Then record the results of three simple calculations:

  • kWh used: Calculate kWh used since the last reading (subtraction).
  • Hours elapsed: Calculate the number of hours since the last reading (subtraction rounded to a whole number).
  • Average kW used: (kWh used)/(hours elapsed). If this number turns out to be 0.36, for example, it means that your average household power usage for the time period was about 360 watts, the equivalent of running six 60-watt bulbs for that whole time period.

Home Energy & Safety

 

Part A

Daily Electrical Usage: Data Collection Home Energy & Safety

Pick a convenient time of day to take readings from your electric meter. You’ll need readings roughly a day apart, but if they differ by only an hour or two, that should be fine. Pick a consistent time you’ll remember, though, such as after getting home for the day. You need to start by doing an initial meter reading, then follow up with a reading every day for the next 7 days. You’ll do 8 readings in all.

Record your readings in the tables below. In addition to the data fields described above, there is a lot of room for usage notes. Record anything that might have substantially affected the electrical usage since your previous reading. This might include the amount of time people were around and awake at home, use of specific devices such as an air conditioner, clothes dryer, TV, or lighting.

Type your response here:

Initial Reading

day & date

time

kWh reading

Day 1                Data Usage notes (since last reading)

day & date

time

kWh reading

kWh used

hours elapsed  ‘

avg. kW used

Day 2                        Data Usage notes (since last reading)

day & date

time

kWh reading

kWh used

hours elapsed

avg. kW used

Day 3                          Data Usage notes (since last reading)

day & date

time

kWh reading

kWh used     ‘

hours elapsed

avg. kW used

Day 4                                Data Usage notes (since last reading)

day & date

time

kWh reading

kWh used

hours elapsed

avg. kW used

Day 5 Data                 Usage notes (since last reading)

day&date

time

kWh reading

kWh used

hours elapsed

avg. kW used

Day 6           Data                   Usage notes (since last reading)

day & date

time

kWh reading

kWh used

hours elapsed

avg. kW used

Day 7 Data                                                                Usage notes (since last reading)

day & date

time

kWh reading

kWh used

hours elapsed

avg. kW used

10ptSpace used(‘includes formatting): 4030 / 30000

Part B

Usage Extremes: Data Collection

For this experiment, you’ll measure electrical usage during a time period when you expect to have very light electrical usage (for instance, while you’re asleep at night or during the day when no one is at home). Likewise you’ll measure electrical usage during a time period when you expect to have heavier than average electrical usage. This time period might be in the evening, when lights and other appliances are on. Both of these time periods should be at least 4 hours long, to increase the accuracy of your results.

Record your results in the tables below for each situation. For each time period, you’ll need to take an initial and a final reading.

Type your response here:

Low Usage – Initial Reading

day & date

time

kWh reading

Low Usage – Final Reading                             Energy Usage Notes

day & date

time

kWh reading
kWh used

hours elapsed

avg. kW used

High Usage – Initial Reading

day & date

time

kWh reading

High Usage – Final Reading                       Energy Usage Notes

day & date

time

kWh reading

kWh used

hours elapsed

avg. kW used

10ptSpace used(includes formatting): 1981 / 30000

Part C

Let’s start the analysis by looking at your “extreme usage” cases. Compare the two cases in detail—low usage period versus high usage period. Discuss differences between the two as well as any surprises. Things you should cover in your discussion: How much difference was there in average power usage (avg. kW) between the low-usage and high-usage time periods? What might have been running during the low-usage period that used energy? Identify likely “stealth” energy users that you could not turn off during the low-usage period. What do you suppose contributed most to the usage during the high-usage period?

15pxSpace used(includes formatting): 0 / 30000

Part D

Having looked at your “extreme usage” cases, analyze your day-to-day usage. Discuss in detail. Specifically, compare higher usage days to lower usage days. Were there significant variations? Do your conclusions regarding the “extreme” cases help to explain any daily variations? What were the surprises or new insights you had in reviewing this day-to-day usage record?

15pxSpace used(includes formatting): 0 / 30000

Part E

It is possible to save a great deal of electrical energy (and money and natural resources) with some simple changes. You’re probably familiar with what some of those changes are and are now more attuned to your own electrical usage. The trouble is, most of these changes either mean changing behavior or spending money. Search the Web for a few ways to save electrical energy. Record them below and categorize them, if possible, as “change behavior” or “spend money.” You might want to consider adding a “neither” category. There are a few things that don’t really require much change or money at all. Include your sources in your answer.

15pxSpace used(includes formatting): 0 / 30000

Part F

Based on what you’ve learned from your household energy investigation, which of these methods seems reasonable to do in your own home this year? (Do you plan to do it?) Provide your rationale.

15pxSpace used(includes formatting): 0 / 30000

 

What Is “Wasted” Electrical Energy?

Discuss the production, transmission, and usage of electricity in the context of conservation of energy. When electricity is “used” or we say that energy is “wasted,” what is actually happening?

15px

Electrical Safety Devices

Perform an Internet search to learn about grounding wires, fuses, and circuit breakers. Specifically,

  • describe how each device works; and
  • relate its function to what you’ve learned in this unit about electric current, voltage and resistance.
  1. What are practical ways to save electrical energy at home?,

  2. How does household power usage vary between high- and low-usage periods?,

  3. What can be learned from daily energy usage patterns?,

  4. What is “wasted” electrical energy in terms of conservation of energy?,

  5. How do grounding wires, fuses and circuit breakers improve electrical safety?

August 19, 2025
August 19, 2025

Electricity, DNA & Fields

discussion- An enormous amount of electricity is created at power-generating stations and sent across the country through wires that carry high voltages. Appliances, power lines, airport and military radars, substations, transformers, computers, and other equipment that carries or uses electricity all generate electromagnetic fields.

Many questions have been raised about how electromagnetic fields affect our bodies. Do they pose a public health risk? Perform an Internet search to find information about the effects of electromagnetic fields on public health. Then, discuss the pros and cons of using equipment that produces an electromagnetic field.

Here is one authoritative source to get you started: electromagnetic fields and public health.

Double Helix Structure of DNA

This task connects the physics of electrostatics with molecular biology. Molecular biology is the study of the structure and function of the cell at the molecular level. DNA’s double helix structure consists of two strands held together by electrostatic forces. Do online research on electrostatics and molecular biology, and then answer the following questions. Here are two sources to start with:

Part A

What is DNA and what is its role in life? List DNA’s four nucleotide bases.

15pxSpace used(includes formatting): 0 / 30000

Electricity, DNA & Fields

 

Part B

Explain DNA’s structure, specifically noting the role electric fields and forces play in it.

15px

 

Electric Field of Dreams

In this activity, you will explore the relationship between the strength and direction of the electric field lines to the type of charge on a particle and its magnitude. You will also explore the interactions between two or more charged particles and observe their movement. To begin your activity, open the simulation: Electric Field of Dreams.  ‪‪Electric field of dreams‬ 1.0.0-dev.10‬

Directions:
At any time you may

  • click the Reset All button to reset all the settings;
  • click the Play/Pause button to pause or resume the motion; or
  • pause the motion and then click the Step button to observe the motion step-by-step.

Part A Electricity, DNA & Fields

To begin, click the Add button to add one object to the system. Observe the electric field around this charged object. You may move the object around the field by dragging it with your cursor. While the arrows indicate the direction of the electric field around the charge, the length of the arrows indicates the field strength. Based on your observations of the field, what is the charge on this object? Give your reasoning.

15pxSpace used(includes formatting): 0 / 30000

Part B

Set the charged object in motion by dragging it and releasing it. What do you observe about the behavior of the field lines in the vicinity of the object?

15pxSpace used(includes formatting): 0 / 30000

Part C

Add another charged object to the electric field by clicking the Add button again. What is the charge of this new object? Give your reasoning. What do you observe about the behavior of both the objects as well as the field lines in the vicinity of both the objects?

15pxSpace used(includes formatting): 0 / 30000

Part D

Click the Remove button to remove one of these objects, and then click the Properties button to set properties for the next object you will add. Just change the sign of the charge to (+), then click Done. Click Add to add this new object to the field. Now what do you observe about the behavior of the two objects and the field lines that surround them? Electricity, DNA & Fields

15pxSpace used(includes formatting): 0 / 30000

Part E

With the two oppositely-charged objects still in the field, apply an external field to the system: In the External Field box, simply drag the dot until it becomes an electric field vector in some direction. Observe, describe, and explain the behavior of the two objects.

15pxSpace used(includes formatting): 0 / 30000

 

Electric Field Hockey  ‪‪Electric field hockey‬ 1.0.0-dev.10‬

In this activity, you will again explore the relationship between an electric field and charged particles in the field, but this time you’ll have a gaming challenge. To begin, open Electric Field Hockey.

Directions:
On the control bar, make sure that the Puck is Positive and the Field boxes are checked. Also, make sure that the Practice option is selected.

Your aim is to score goals by manipulating the black puck (test charge) into the blue-colored bracket (goal) on the right. Think smart and place positive source charges (red) and negative source charges (blue) in such a way that the black puck moves into the goal.

Note that when you place a red, positive source charge in the hockey field, a red arrow appears on the black puck (test charge) showing the force the positive charge exerts on the puck. Similarly, when you place a blue, negative source charge in the hockey field, a blue arrow appears on the black puck (test charge) showing the force the negative charge exerts on the puck.

Part A

Place a red charge in the hockey field and click Start. In which direction do electric field lines point? In which direction does the black puck move? What conclusion do you draw from this movement?

15pxSpace used(includes formatting): 0 / 30000

Part B

Click Reset and then click Clear. Now, place a blue charge in the hockey field and click Start. In which direction do electric field lines point? In which direction does the black puck move? What conclusion do you draw from this movement?

15pxSpace used(includes formatting): 0 / 30000

Part C

Manipulate the mass of the puck by dragging the Mass bar to the right for increasing the mass and to the left for decreasing it. What changes do you see in the speed of the puck? Which principle works behind this change?

15pxSpace used(includes formatting): 0 / 30000

Part D

In the same situation, what do you observe about the relationship between the speed of the black puck and its distance from the blue charge?

15pxSpace used(includes formatting): 0 / 30000

Part E

You can make the puck travel in complex ways by placing a set of charges around on the field. So, here’s your game challenge: Arrange source charges around to propel the puck from its starting position into the goal. That’s pretty easy for a straight shot; you just put a negative charge behind the goal. But what if there are barriers in the way? That’s a real test of your physics understanding, including Newton’s laws of motion and electrostatic forces. Game’s on!

On the control bar, check the Trace, Field, and Anti-alias boxes. The game has three Difficulty levels. Start with Difficulty level one and arrange source charges to get the puck into the goal. Once you’ve made a score at any level, increase the Difficulty level. Take a screen capture of two of your most difficult goals and paste them here. At least one of these should be at Difficulty level 2 or 3.

(Note: On a Windows computer, you can use the key combination Alt-Print Screen to copy the currently-active window to your clipboard. When you capture an image of this simulation window, paste the image into an image-processing program such as Paint, and save the image as a file. Then use the Insert Image button to insert the file into the response area.)

15pxSpace used(includes format

  • What are electromagnetic fields and what are their pros and cons for public health?,

  • What is DNA and what are its four nucleotide bases?

  • How does electrostatics help explain DNA’s double helix structure?,

  • What observations can be made about charges field lines and particle interactions in the Electric Field of Dreams simulation?,

  • What can we learn from the Electric Field Hockey simulation about charges, motion, and electrostatic forces?

August 19, 2025
August 19, 2025

Cilantro vs Parsley

Cilantro vs persley There’s often confusion between these two wonderful culinary herbs, for both cooks and gardeners. Cilantro and flat-leaf parsley have similar uses and are practically twins of each other, visually, but they do have distinct di�erences. This article clarifies their individual characteristics, including their growth habits.

It’s a good day on the blog when I get to talk about two of my favorite, most useful, fresh herbs: cilantro and parsley. As a cooking educator, I often get questions about when to use which. And in the garden, there are often assumptions that they grow similarly to each other, which is not quite the case.

A couple of notes before we get started. In the U.S., we refer to the green leaves of cilantro as cilantro, while in Europe and India they’re called

coriander. In the U.S., coriander are the seeds of the cilantro plant.

There are two main types of parsley: flat-leaf (or Italian) and curly. Flat-leaf parsley has a strong, herbal, grassy flavor. Curly parsley, on the other hand, is mild in flavor and papery in texture and is usually used just as a garnish. All references to “parsley” in this article will be referencing flat- leaf parsley.

Now, let’s get to the deets!

Botanical Overview Cilantro vs Parsley

Cilantro (Coriandrum sativum) — Cilantro (formerly known as Chinese parsley) is a member of the Apiaceae family, and is actually related to parsley. Not surprisingly, given their appearance.

Parsley (Petroselinum crispum) — As noted above, parsley is related to cilantro and is also a member of the Apiaceae family, which includes carrots, fennel, chervil, dill, cumin, lovage, celery, parsnips, Queen Anne’s lace, and more.

Some members of this family — including parsley, dill, carrots, and parsnips — have interesting blooming habits, where the seed-producing flowers are huge, showy, umbrella-like structures, known as umbels, with tiny yellow or white flowers.

Flavor

Cilantro vs Parsley
Cilantro: Also known as coriander in Europe and India, cilantro has a distinct, pungent flavor often described as fresh, citrusy, and slightly peppery. Most people have a love/hate relationship with cilantro because of the presence of aldehydes, which some perceive as a soapy or metallic flavor. But for those of us where cilantro doesn’t taste like soap, it’s a much beloved herb that’s crucial in salsas and guacamole.

Parsley: Flat-leaf parsley has a more robust flavor, described as fresh, slightly bitter, grassy and earthy with pepper undertones, making it suitable for a variety of dishes, especially within Italian cuisine.

 

Cilantro vs Parsley

Plant Life Cycle

Cilantro: Cilantro is an annual plant, meaning it completes its life cycle — grows from seed, produces leaves, and then flowers to produce seeds — in one growing season, and does not survive from one year to another.

Cilantro is distinctly a cool-weather plant and will bolt (go to seed) as soon as the weather turns hot. This, of course, is a real bummer for salsa lovers, as cilantro’s growing season does not overlap with onions, tomatoes, and peppers.

Cilantro is easy to grow from seed, and also easily produces seed. When the plant produces flowers, leave it be, and you’ll see seeds appear soon enough. Interestingly, the young, tender, bright green seeds are edible and delicious — pick a few for a treat in your green salads.

Mature seeds will dry out to brown, and can be ground into the spice known as coriander, or saved to replant next year.

Parsley: Parsley, like many other species in the Apiaceae family, including carrots, is actually a biennial plant, which means it takes two years to complete its life cycle. It grows delicious, edible leaves in its first year and dies back. Then resprouts in the spring of the second year to produce flowers and seeds. Seeds that drop to the ground can sprout the following year as a first-year plant, beginning the cycle anew.

Most gardeners grow parsley as an annual reseeding fresh every year. My parsley garden, however, contains both first and second-year plants, so I have a yearly supply of fresh parsley without having to reseed each year. Second-year plants do have green foliage, but they’re easy to tell apart from first-year plants, as the leaves are long and spindly and definitely not very flavorful.

Growing Conditions

Cilantro — As mentioned above, cilantro is a cool-weather plant and grows best in the spring. You can plant seeds as soon as the soil warms su�ciently. Or sow them in containers, which is what I normally do.

Unfortunately, cilantro will bolt as soon as the weather gets hot, even if only briefly. Here in the Ohio Valley, we usually have a freak 90ºF hot streak over Memorial Day weekend before cooling back down to normal June temps. That small stretch is enough to send plants into flowering mode.

Like most herbs, cilantro prefers loamy, well-draining soil and even watering throughout its short growing cycle.

Parsley — Parsley is much hardier than its cousin, cilantro, and can tolerate a wide variety of conditions. Sow parsley seeds in late spring, when the threat of frost and snow has passed. Seeds will take a while to germinate, so be patient.

 

 

Parsley grows well in loamy, well-draining soil and thrives in full sun or partial shade. I always plant parsley in its own in-ground bed, because it’s quite prolific and, with enough seeding, can grow into a large, bushy bed.

One really cool thing about flat-leaf parsley is that it can survive cold temperatures surprisingly well. In fact, one winter, as an experiment, I draped a row cover over an entire first-year crop, and the plants lasted well into February, full-flavored and everything. Here’s a photo of the experiment in late December that year:

I do believe the plants would’ve lasted even longer if we hadn’t had a significant snowstorm that tore down the row covers and flattened the

bed with wet, heavy snow.

  1. What are the botanical classifications of cilantro and parsley?,

  2. How do cilantro and parsley differ in flavor?,

  3. What is the plant life cycle of cilantro compared to parsley?,

  4. What are the ideal growing conditions for cilantro?,

  5. What are the ideal growing conditions for parsley?

August 19, 2025
August 19, 2025

Extortion

1. What does the word, “extortion”, mean?

2. What does a “satellite dish” look like?

3. Why is a satellite dish shaped the way it is?

4. Does Central Georgia College (CGC) actually exist?

5. Why do you think the author chose to have Jim Wallace teach at CGC instead of the larger University of Georgia?

6. Why might a physics professor teach astronomy?

7. How are physics and astronomy related?

8. What is a GPS? What is the GPS?

9. What is “electrical engineering”, and how does it relate to this story?

10. What did Thomas Johnson do with his “dish”?

11. What does the “government allow” for amateur radio operators?

12. What is the “FM spectrum”? Extortion

13. What does “pumping wattage” mean?

14. Why might Mr. Johnson hear a communication between Russians and someone in New York City?

15. What is “RF”?

16. Why do we call Scout’s home star Epsilon Eridani?

17. Why do astronomers suspect there might be planets orbiting Epsilon Eridani?

18. What is a light year?

19. Why would it take 10.5 years for a message to travel to or from Epsilon Eridani?

20. What was Wallace referring to when he asked Johnson about “bouncing around the Earth?

21. Why is reflection “way down” in daylight hours?

22. What is a satellite?

23. Why are some satellites “over the equator”? What is a Clarke orbit?

Extortion

 

24. What does “orbital period” mean?

25. Why did Wallace think that Scout’s orbital period was 4 hours?

26. Why did Wallace think that Scout’s altitude was more than 6000 kilometers?

27. What is a kilometer?

28. What is GMT? What is EST?

29. How are GMT and EST related?

30. What is MHz?

31. What are photons?

32. How did Scout propose to recharge his energy storage unit?

33. How much energy does 1 photon carry at 299.87 MHz?

34. How might Scout acquire energy if Wallace and Johnson refused to provide it?

35. What are NASA and DHS?

36. What is a scanner?,

37. What is a solar flare?,

38. What is a gravity well?,

39. What are the “thousands of pieces of orbiting debris” that Scout referred to?,

40. Why did Wallace hope to live another 21 years? Extortion

August 19, 2025
August 19, 2025

HR Diagram Lab

Learning Objective:
To become familiar with one of the most commonly used tools for understanding stars, the HR diagram

Prerequisites: Read Chapter 15

Materials Required

Computer and internet access
Digital camera or scanner
HR Diagram Graph: download and print out, or you may create your own graph but using similar axes
Time Required: approximately 3 hours

Exploration Study and Information
Properties of Stars
The Hertzsprung-Russell Diagram, or HR Diagram, is a graph in which a star’s temperature is plotted against its absolute magnitude. From such a diagram, other information about a star’s properties and life cycle can be determined. A simplified HR Diagram appears in your textbook and is shown below for reference. Note that this diagram shows the different categories of types of stars, such as the Main Sequence, Giants, etc.. In this laboratory, you will construct an HR Diagram using data on the 20 stars that are nearest to our Sun and the 20 brightest stars in our sky. Then you will use the finished diagram to describe the properties and life cycle of stars. And then you will use a simulation where you will follow the life stages of our Sun on this diagram.

HR Diagram Lab

 

Image 1. H-R Diagram. Bennett, J., Donahue, M., Schneider, N., & Voit, M. (2019). Cosmic Perspective, The (9th ed.). Pearson.

Part 1 – Creating Your Own HR Diagram. HR Diagram Lab
Instructions
You will be using Table 1 and Table 2 to plot the 20 nearest and 20 brightest stars on the attached HR diagram. The following tips will be helpful when graphing stars;

Temperature is on the horizontal axis, absolute magnitude is on the vertical axis,
Absolute magnitude decreases as the values become more positive,
Notice the graph lines used to plot temperature are unevenly spaced and that the number of Kelvins between each line is not constant. Carefully check a star’s temperature and the value of its graph line before plotting each star.
Use a plus sign (+) to graph each of the nearest stars (listed in Table 1) on the diagram.
Use a circled dot (o) to graph each of the brightest stars as seen from Earth (listed in Table 2) on the diagram. Show stars that appear on both tables using a square (). Please sign you name on your graph and include the date. HR Diagram Lab

  1. What is the Hertzsprung-Russell (HR) diagram and what does it show?,

  2. How do you plot stars (nearest and brightest) on the HR diagram?,

  3. What do the plotted positions of stars reveal about their properties?,

  4. How does the HR diagram illustrate the life cycle of stars, including our Sun?,

  5. Why is the HR diagram an important tool for understanding stellar evolution?

August 19, 2025
August 19, 2025

Developing a Research Study

This week, we are learning about developing a research study. It is important to operationally define your variables so that you can accurately observe and measure them. Describe a specific research idea and how you would go about studying that idea. Remember to include the variables involved, a potential hypothesis, possible methods, and the statistical tests needed to analyze your data. Find a published article in a research journal to support your idea.

Do you need to find a articles discussed in recent issues of professional peer-reviewed journals?

Developing a Research Study

To identify the journal or journals you browse, you can use “library services” or journal websites to see what recent topics have been discussed in journals.

Some journals you may look at include:  American Journal of Psychology, Behavioral and Brain Sciences, British Journal of Psychology, Evolution and Human Behavior, Journal of Abnormal Psychology, Journal of Cognitive Neuroscience, Psychology of Addictive Behaviors, Behavior Research and Therapy, Psychopharmacology, Behavioral Pharmacology, European Journal of Neuroscience, Journal of Applied Behavior Analysis, Journal of Experimental Psychology, Learning and Memory, Neuropharmacology

CheDeveloping a Research Study

Developing a Research Study

Developing a Research Study

  1. What is the specific research idea?,

  2. What are the independent and dependent variables?,

  3. What is the hypothesis of the study?,

  4. What methods can be used to study the idea?,

  5. Which statistical tests would analyze the data and what published research supports the study?


Comprehensive General Answer

  1. Research Idea
    A possible research idea is to study the relationship between sleep quality and academic performance in college students. Many students struggle with balancing coursework and sleep, and understanding this relationship could provide insights into mental health and productivity.

  2. Variables

  • Independent Variable (IV): Sleep quality, measured using a standardized scale (e.g., the Pittsburgh Sleep Quality Index).

  • Dependent Variable (DV): Academic performance, measured by GPA or standardized test scores.

  • Control Variables: Age, gender, study habits, caffeine intake, and class load, to ensure these factors do not confound results.

  1. Hypothesis
    “If college students experience higher quality sleep, then their academic performance will be significantly better compared to students with poor sleep quality.”

  2. Methods
    Participants would complete a survey on sleep quality and provide consent to access GPA records. Data collection could occur through university emails or psychology courses. The design would be correlational since sleep cannot be fully manipulated ethically. However, an experimental version could involve assigning groups to different sleep schedules under lab conditions.

  3. Statistical Tests and Support
    The data would be analyzed using:

  • Pearson’s correlation to examine the relationship between sleep quality and GPA.

  • Multiple regression analysis to control for additional variables (e.g., caffeine, study hours).
    If an experimental version is used, an independent-samples t-test could compare academic outcomes between a well-rested group and a sleep-deprived group.

Supporting Research:
A study by Gilbert & Weaver (2010), published in the Journal of American College Health, found a strong association between sleep quality and academic performance in college students, supporting the idea that sleep plays a critical role in cognitive functioning and learning outcomes.

August 15, 2025
August 15, 2025

Medical Coding Reflection

Initial learning that a student gains throughout their program of study can be very profound. This education and training are powerful and can help to provide the foundation needed for success.  With this in mind, take a moment and think back to the first day of your first class. Consider all of the courses you have completed up to this point in the program. Being so close to completing your coding program of study, what are your thoughts about your initial learning?

Use the attached assignment document to complete and submit for grading.

Medical Coding Concepts.docx

Medical Coding Reflection

Medical Coding Reflection

Medical Coding Concepts – W1A2 – HP216

Initial learning that a student gains throughout their program of study can be very profound. This education and training are powerful and can help to provide the foundation needed for success. With this in mind, take a moment and think back to the first day of your first class. Consider all of the courses you have completed up to this point in the program. Being so close to completing your coding program of study, what are your thoughts about your initial learning? What are your thoughts about how you can apply all the information gained in your future career?

Articulate your knowledge of medical coding concepts and topics.  

Medical Coding Reflection

Include the following aspects:

1. How have the courses you’ve taken prepared you for the CBCS certification exam?

1. Share two important concepts, topics, or guidelines you have learned related to coding and billing. and share the impact they had on your initial learning process.

1. Discuss how you can best highlight what you have learned in the program on your resume.

Medical Coding Reflection

  • How have the courses taken prepared you for the CBCS certification exam?,

  • What are two important concepts, topics or guidelines learned in coding and billing?,

  • How did these concepts impact your initial learning process?,

  • How can the information gained be applied in a future career?,

  • How can the knowledge gained be highlighted on a resume?